

Fifth International Conference on Pedestrian and Evacuation Dynamics National Institute of Standards and Technology, Gaithersburg, MD USA March 8-10, 2010

A Knowledge-Based Approach to Crowd Classification

S.Bandini, <u>L.Manenti</u>, S.Manzoni, F. Sartori CSAI – Complex Systems & Artificial Intelligence Research Center University of Milano-Bicocca {bandini, manenti, manzoni, sartori}@disco.unimib.it

Presentation Outline

- crowding phenomena
- general methodology
- tool development
- ontology implementation
- case study
- future works

Crowding phenomena

-The study of how people behave and move-

- Worldwide Research Network:
 - to describe human behaviors and interactions;
 - observations and data by multiple disciplines for heterogeneous aims using heterogeneous approaches:
 - Force-based models (Helbing, 1995);
 - Cellular Automata based models (Schadschneider, 2001);
 - Multi-Agent Systems based models (SCA, 2002);
 -

Crowding phenomena

-The study of how people behave and move-

- Worldwide Research Network:
 - to describe human behaviors and interactions;
 - observations and data by multiple disciplines for

heterogeneous aims using heteroge

approaches:

Loss of data, information and shared semantic

Initiatives oriented to data sharing for model benchmarking and validation in the Computer Science Area

PED 2010 - March 9th - Washington

The two-levels approach for crowd study

Crowd

Profiling:

identify peculiar crowd features

Supported by:

Fuzzy logic

Ontology

Direct observation

<u>Crowd</u> <u>Modeling:</u>

abstraction and representation of pedestrians behaviour

Supported by: SCA

Tools for explicit representation of crowds domain which provides users with domain semantic to share knowledge.

Tool development

Metholodogy used for tool development:

First Step: Theory choice

- Elias Canetti "Crowds and Power", 1960
 - empirical observations and studies on crowds' phenomenology
- The analysis comprehends
 - considerations from many perspectives (psychological, anthropological, ideological, political...)
 - classification of crowds

Second step: formal representation of Canetti's theory

	Open	Closed	Stagnating	Rhythmic	Slow	Quick
Physical boundaries	No	Yes	-	-	-	-
Psychological boundaries	No	Yes	-	Yes	1	-
Movement		-	No	Yes		-
Density	-	-	High/ Medium	Low	High/ Medium	Low
Growth	High	Medium/ Low	-	Low	High	Medium/ Low
Lifespan	-	-	-	Medium/ Short	Long	Short
Destination	-	- PED 201	IO March 9th - Was	Near bington	Far	Near §

Third Step:

identification of main concepts

Identification of main concepts:

How to model crowd features?

Features modeling:

- crisp value: simple to evaluate, they can assume only boolean values
 - i.e. physical and psychological boundaries, movement
- linguistic quantifiers: high level of uncertainty, how to create relationships with observable values?
 - i.e. low, medium, high, ...

Fuzzy Logic (Zadeh, 1996)

- a mathematical theory that simplifies the management of vague terms through the definition of fuzzy sets and Membership Functions
- Each fuzzy set is defined by a
 Membership Function that
 returns the membership degree
 in the interval [0..1] of a real
 value related to the fuzzy set

Steps of fuzzy logic application:

- Specification of fuzzy sets
 - e.g. subconcepts of high Density, high Growth, long Lifespan, near Destination
- Creation of Membership Functions
 - Trapezoidal Functions for Density and Growth
 - Bell-shaped Functions for Lifespan and Destination

Trapezoidal Functions

• LowFunction(n, m) with m > n:

$$y = \begin{cases} 1 & \text{if } 0 < x < n \\ \frac{m-x}{m-n} & \text{if } n \le x \le m \\ 0 & \text{if } x > m \end{cases}$$

• HighFunction (w, z) with z > w:

$$y = \begin{cases} 0 & \text{if } x < w \\ \frac{x - w}{z - w} & \text{if } w \le x \le z \\ 1 & \text{if } x > z \end{cases}$$

Bell-shaped Functions

$$B(x,\gamma,\beta) = \frac{1}{1 + \left(\frac{x-\gamma}{\beta}\right)^2}$$

Membership Functions experimentally designed according to a given crowd scenario

Fourth Step: ontology implementation

- classes
- properties
- datatypes
- rules

Fourth Step: ontology implementation

The ontology can be used following 3 steps:

- to collect data about density, growth, lifespan and destination and to verify the presence of movement, physical and psychological boundaries
- to put observations values (true, false or observable values) in the ontology (input step)
- to start the reasoners that produces crowd classification (output step)

Case Study: concert crowd scenario

- study of different dynamics in the concert scenario
- collaborations with artists and music experts in order to collect experimental data by means of knowledge acquisition methodologies
- experimental data are related to:
 - Different kinds of music
 - Types of concerts
 - Types of singers/artists

to interpret crowd features in concert scenario and to establish Membership Functions parameters values

Case Study: concert crowd scenario

Features interpretation:

- lifespan is described as the concert duration
- destination is described as songs average duration

Data sets create following the interpretation

	γ min	γmedium	γ max	βmin	$oldsymbol{eta}$ medium	β _{max}
Lifespan	1.5	5	18	0.5	2	6
Destination	4.3	-	2	2	-	50

Case Study: a real case of concert scenario

SafariTour2008 - Lorenzo Jovanotti Cherubini and his band: Crowd profiling at closing-tour event of Safari tour 2008 (Palabrixia, Brescia, Italy, 13.12.2008)

Case Study: a real case of concert scenario

Analysis of the event:

	Analysis	Ontology Input	
Physical boundaries	Structure	Yes	
Psychological boundaries	Pay ticket	Yes	
Movement	Not uniform	-	
Density	People / Area	2 per/mq	
Growth	Affluence / Gates	14 pers/min	
Lifespan	Concert duration	2:00 hours	
Destination	Lifespan / Songs number	4:24 min	

Case Study: a real case of concert scenario

Crowd Classification: Closed and Quick Crowd

Future Works

- ongoing research project aiming at the development of decision support crowd management
- analysis of different crowd scenarios in order to establish other Membership Functions parameters (e.g. sports events)
- ontology testing in concert scenario using data collected during tours and concerts
- update ontology for protégé v.4 using a plugin developed for fuzzy values calculation

Some references..

- Schadschneider, A.: Cellular Automaton Approach to Pedestrian Dynamics Theory, in M. Schreckenberg and S.D.Sharma (Eds.), Pedestrian and Evacuation Dynamics, Springer, p. 75 (2001)
- D. Helbing and P. Molnar. Social force model for pedestrian dynamics. *Physical Review E*, 51(5), 1995
- S. Bandini, S. Manzoni, and C. Simone. Dealing with space in multi–agent systems: a model for situated mas. In AAMAS, pages 1183–1190, 2002
- Canetti E.: Crowds and Power, The Noonday Press/Farrar, Straus and Giroux (1984)
- Zadeh, L.A.: Fuzzy Logic = Computing with Words, IEEE Transactions on Fuzzy Systems, vol. 4, n. 2, pp.103-111 (1996)
- Bandini S., Manzoni S. and Sartori F.: A Fuzzy Ontology for the Classification of Crowds at Concerts, in C. Kop, M.-Á. Sicilia, F. Sartori, E. Dubois, P. Johannesson (Eds.): Proceedings of ONTOSE 2009, CEUR Workshop Proceedings, Vol. 460, pp 13-24 (2009)
- Magnolo E., Manenti L., Manzoni S., Sartori F.: Towards a MAS Model for Crowd Simulation at Pop-Rock Concerts Exploiting Ontologies and Fuzzy Logic, in Proc. of 10th workshop from Objects to Agents, WOA 2009, 9-10 July 2009, Parma (2009)

C&CA 2010 call for paper

3rd International Workshop on CROWDS & CELLULAR AUTOMATA

at 9th International Conference on Cellular Automata for Research and Industry (ACRI 2010)

Ascoli Piceno (ITALY)

September 21-24, 2010

Fifth International Conference on Pedestrian and Evacuation Dynamics National Institute of Standards and Technology, Gaithersburg, MD USA March 8-10, 2010

Thank you!

S.Bandini, <u>L.Manenti</u>, S.Manzoni, F. Sartori

CSAI – Complex Systems & Artificial Intelligence Research Center

University of Milano-Bicocca {bandini, manenti, manzoni, sartori}@disco.unimib.it

